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Abstract

Purpurone is obtained from 3-(3,4-dimethoxyphenyl)pyruvic acid, 2-(4-methoxyphenyl)ethylamine and
2,2’ 2'-trichloroethyl 2-bromo-2-(3,4-dimethoxyphenyl)acetate in seven steps with an overall yield of 11%.
Ningalin C is synthesized from 1-[2-(3,4-dimethoxyphenyl)ethyl]-3,4-bis-(3,4-dimethoxyphenyl)-1H-
pyrrole and methyl 2-diazo-2-(3,4-dimethoxyphenyl)acetate in five steps with a total yield of 19%. © 2000
Published by Elsevier Science Ltd.
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In 1993 Chan, Faulkner and co-workers' reported the isolation and structural elucidation of
the marine alkaloid purpurone (1) from an Indopacific sponge of the genus lotrochota. In the
course of the bioassay-guided fractionation of the extracts, purpurone was identified as a potent
ATP-citrate lyase (ACL) inhibitor* (ICs,=25 pg/mL). The compound probably represents the
aglycon of more complex sugar or protein conjugates as it is liberated only after acidic
hydrolysis. Later, an hydroxy derivative of 1, ningalin D (2), was discovered by Kang and
Fenical® in an unidentified ascidian of the genus Didemnum together with three biogenetically
related analogues including ningalin C (3).

* Corresponding author. Fax: (+49) 89-2180-7756; e-mail: wos@cup.uni-muenchen.de
T Dedicated to Professor Harry H. Wasserman on the occasion of his 80th birthday.
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Retrobiosynthetic analysis suggests that purpurone (1) is built-up from five aromatic amino
acid residues* (Scheme 1). The core unit is the N-substituted 3,4-diarylpyrrole-2,5-dicarboxylic
acid 5, which could be formed by oxidative dimerization of aryl pyruvic acid 4 followed by
condensation of the resulting 1,4-diketone with tyramine 6. Attachment of two further
molecules of 4 to the pyrrole ring in 5 would yield an intermediate, from which the purpurone
system can be derived by decarboxylation and subsequent cyclization. In this paper we describe
the syntheses of purpurone (1) and ningalin C (3) according to this proposal, a strategy which
has already been successfully applied to the total syntheses of other marine pyrrole alkaloids
like polycitrin A, lamellarin G trimethyl ether,* lamellarin L® and storniamide A nonamethyl
ether.’
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Scheme 1. Retrobiosynthetic analysis of purpurone (1)

Our highly convergent total synthesis of purpurone (1) started with the one pot formation* of
pyrrole—dicarboxylic acid 8 by oxidative dimerization of two molecules of 3-(3,4-dimethoxy-
phenyl)pyruvic acid (7) and subsequent condensation with 2-(4-methoxyphenyl)ethylamine
(Scheme 2). Decarboxylation by treatment with trifluoroacetic acid® afforded pyrrole 9 in almost
quantitative yield. The twofold Friedel-Crafts alkylation was accomplished by heating 9 with
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Scheme 2. Reagents and conditions: (a) 1) n-BuLi (2 equiv.), THF, -78°C; ii) I, (0.5 equiv.), =78 to 25°C; iii)
2-(4-methoxyphenyl)-ethylamine (3 equiv.), 4 A molecular sieves, 18 h; (b) TFA (15 equiv.), CHCl;, reflux, 10 h; (c)
14 (2.5 equiv.), acidic Al,O5 (40 equiv.), CHCI,, reflux, 10 h; (d) Zn dust (50 equiv.), aq. NH,OAc (IN, 4 equiv.),
THEF, 25°C, 1.5 h; (e) Ac,O, KOAc (2.6 equiv.), reflux, 1.25 h; (f) 5% aq. NaOH, air, MeOH, 55°C, 0.5 h; (g) BBr;
(10 equiv.), cyclohexene (20 equiv.), CH,Cl,, —78°C

bromoester 14° in chloroform in the presence of acidic alumina (40 equiv.). The key compound
10 was thereby obtained in 57% yield.'® Cleavage of the ester groups under mild conditions with
Zn/aqueous NH,OAc in THF"' furnished the crude diacid 11 in 89% yield, which on heating
with Ac,O/KOACc'? was regioselectively cyclized to the diacetate 12 (63% yield). Conversion of
12 to purpurone nonamethyl ether (13)"® was achieved by saponification with aqueous sodium
hydroxide in methanol under exposure to air in 66% yield. The synthesis was completed by
cleavage of the O-methyl groups with an excess of boron tribromide'* in dichloromethane under
addition of cyclohexene as bromine scavenger.'” Purpurone (1) was thereby obtained as an
amorphous deep purple solid in 11% overall yield. Its spectroscopic data (UV, NMR, MS)
agreed with those reported for the natural product.'
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For the total synthesis of ningalin C (3), pyrrole 9a'® was monoalkylated by Rh(IT)acetate
catalyzed insertion of the carbene!” generated from methyl 2-diazo-2-(3,4-dimethoxyphenyl)-
acetate'® (Scheme 3). Saponification of ester 15 and subsequent intramolecular Friedel-Crafts
acylation'? of crude acid 16 furnished the trifluoroacetate 17. Formation of both the conjugated
and the amide carbonyl groups of the ningalin C skeleton 18 was achieved in one step (25%
from 16) by simply subjecting the acylated phenol 17 to aqueous sodium hydroxide/methanol
under exposure to air. The deep orange-colored permethyl ningalin C (18)'* was converted to the
natural product by methyl ether cleavage using boron tribromide in dichloromethane'* to
furnish 3 in a total yield of 19% from 9a. The spectral data (IR, UV-vis, MS, 'H, *C NMR)
correspond to those given for the natural product.?
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Scheme 3. Reagents and conditions: (a) Methyl 2-diazo-2-(3,4-dimethoxyphenyl)acetate (1.5 equiv.), cat. [Rh(OAc),],,

CH,Cl,, 25°C, 2.5 h; (b) 5% aq. NaOH, EtOH, reflux, 1 h; (c) TFAA, KO,CCF; (1.1 equiv.), CH,Cl,, 45°C, 4 h; (d)
10% aq. NaOH, MeOH, 25°C, 18 h; (e) BBr; (13 equiv.), CH,Cl,, —=78 to 25°C, 18 h
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Utilization of excess BBr; without the addition of cyclohexene resulted in partial mono-bromination of 1 at the
4-hydroxybenzene unit. 1 and its bromo derivative were easily separated by RP-18-HPLC (solvents: A:
CH;CN/H,0O 1:9+0.1% TFA, B: CH;CN. Gradient: 100% A to 100% B within 50 min. Retention times: 1: 21
min, bromo derivative: 22 min).

The synthesis of 9a followed the procedure described for 9 with homoveratrylamine instead of 2-(4-
methoxyphenyl)ethylamine.
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Methyl 2-diazo-2-(3,4-dimethoxyphenyl)acetate was obtained in 62% yield by stirring methyl 2-(3,4-
dimethoxyphenyl)acetate with 4-toluenesulfonyl azide (1 equiv.) and DBU (1 equiv.) in CH;CN for 15 h at
ambient temperature.



