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Abstract

Purpurone is obtained from 3-(3,4-dimethoxyphenyl)pyruvic acid, 2-(4-methoxyphenyl)ethylamine and
2%,2%,2%-trichloroethyl 2-bromo-2-(3,4-dimethoxyphenyl)acetate in seven steps with an overall yield of 11%.
Ningalin C is synthesized from 1-[2-(3,4-dimethoxyphenyl)ethyl]-3,4-bis-(3,4-dimethoxyphenyl)-1H-
pyrrole and methyl 2-diazo-2-(3,4-dimethoxyphenyl)acetate in five steps with a total yield of 19%. © 2000
Published by Elsevier Science Ltd.
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In 1993 Chan, Faulkner and co-workers1 reported the isolation and structural elucidation of
the marine alkaloid purpurone (1) from an Indopacific sponge of the genus Iotrochota. In the
course of the bioassay-guided fractionation of the extracts, purpurone was identified as a potent
ATP-citrate lyase (ACL) inhibitor2 (IC50=25 mg/mL). The compound probably represents the
aglycon of more complex sugar or protein conjugates as it is liberated only after acidic
hydrolysis. Later, an hydroxy derivative of 1, ningalin D (2), was discovered by Kang and
Fenical3 in an unidentified ascidian of the genus Didemnum together with three biogenetically
related analogues including ningalin C (3).
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Retrobiosynthetic analysis suggests that purpurone (1) is built-up from five aromatic amino
acid residues4 (Scheme 1). The core unit is the N-substituted 3,4-diarylpyrrole-2,5-dicarboxylic
acid 5, which could be formed by oxidative dimerization of aryl pyruvic acid 4 followed by
condensation of the resulting 1,4-diketone with tyramine 6.4 Attachment of two further
molecules of 4 to the pyrrole ring in 5 would yield an intermediate, from which the purpurone
system can be derived by decarboxylation and subsequent cyclization. In this paper we describe
the syntheses of purpurone (1) and ningalin C (3) according to this proposal, a strategy which
has already been successfully applied to the total syntheses of other marine pyrrole alkaloids
like polycitrin A,5 lamellarin G trimethyl ether,4 lamellarin L6 and storniamide A nonamethyl
ether.7

Our highly convergent total synthesis of purpurone (1) started with the one pot formation4 of
pyrrole–dicarboxylic acid 8 by oxidative dimerization of two molecules of 3-(3,4-dimethoxy-
phenyl)pyruvic acid (7) and subsequent condensation with 2-(4-methoxyphenyl)ethylamine
(Scheme 2). Decarboxylation by treatment with trifluoroacetic acid8 afforded pyrrole 9 in almost
quantitative yield. The twofold Friedel–Crafts alkylation was accomplished by heating 9 with

Scheme 1. Retrobiosynthetic analysis of purpurone (1)
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Scheme 2. Reagents and conditions : (a) i) n-BuLi (2 equiv.), THF, −78°C; ii) I2 (0.5 equiv.), −78 to 25°C; iii)
2-(4-methoxyphenyl)-ethylamine (3 equiv.), 4 A, molecular sieves, 18 h; (b) TFA (15 equiv.), CHCl3, reflux, 10 h; (c)
14 (2.5 equiv.), acidic Al2O3 (40 equiv.), CHCl3, reflux, 10 h; (d) Zn dust (50 equiv.), aq. NH4OAc (1N, 4 equiv.),
THF, 25°C, 1.5 h; (e) Ac2O, KOAc (2.6 equiv.), reflux, 1.25 h; (f) 5% aq. NaOH, air, MeOH, 55°C, 0.5 h; (g) BBr3

(10 equiv.), cyclohexene (20 equiv.), CH2Cl2, −78°C

bromoester 149 in chloroform in the presence of acidic alumina (40 equiv.). The key compound
10 was thereby obtained in 57% yield.10 Cleavage of the ester groups under mild conditions with
Zn/aqueous NH4OAc in THF11 furnished the crude diacid 11 in 89% yield, which on heating
with Ac2O/KOAc12 was regioselectively cyclized to the diacetate 12 (63% yield). Conversion of
12 to purpurone nonamethyl ether (13)13 was achieved by saponification with aqueous sodium
hydroxide in methanol under exposure to air in 66% yield. The synthesis was completed by
cleavage of the O-methyl groups with an excess of boron tribromide14 in dichloromethane under
addition of cyclohexene as bromine scavenger.15 Purpurone (1) was thereby obtained as an
amorphous deep purple solid in 11% overall yield. Its spectroscopic data (UV, NMR, MS)
agreed with those reported for the natural product.1
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For the total synthesis of ningalin C (3), pyrrole 9a16 was monoalkylated by Rh(II)acetate
catalyzed insertion of the carbene17 generated from methyl 2-diazo-2-(3,4-dimethoxyphenyl)-
acetate18 (Scheme 3). Saponification of ester 15 and subsequent intramolecular Friedel–Crafts
acylation12 of crude acid 16 furnished the trifluoroacetate 17. Formation of both the conjugated
and the amide carbonyl groups of the ningalin C skeleton 18 was achieved in one step (25%
from 16) by simply subjecting the acylated phenol 17 to aqueous sodium hydroxide/methanol
under exposure to air. The deep orange-colored permethyl ningalin C (18)13 was converted to the
natural product by methyl ether cleavage using boron tribromide in dichloromethane14 to
furnish 3 in a total yield of 19% from 9a. The spectral data (IR, UV–vis, MS, 1H, 13C NMR)
correspond to those given for the natural product.3
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